Coordinated path following control of multiple wheeled robots using linearization techniques

نویسندگان

  • Reza Ghabcheloo
  • António Manuel Santos Pascoal
  • Carlos Silvestre
  • Isaac Kaminer
چکیده

The paper addresses the problem of steering a fleet of wheeled robots along a set of given spatial paths, while keeping a desired inter-vehicle formation pattern. This problem arises for example when multiple vehicles are required to scan a given area in cooperation. In a possible mission scenario, one of the vehicles acts a leader and follows a path accurately, while the other vehicles follow paths that are naturally determined by the formation pattern imposed. The paper solves this and other related problems using a simple algorithm that builds on linearization techniques and gain scheduling control theory. Using this set-up, path following (in space) and inter-vehicle coordination (in time) are almost decoupled. Path following for each vehicle amounts to reducing a conveniently defined generalized error vector to zero. Vehicle coordination is achieved by adjusting the speed of each of the vehicles along its path, according to information on the position of all or some of the other vehicles. No other information is exchanged among the robots. The set-up adopted allows for a simple analysis of the resulting coordinated path following control system. The paper describes the structure of the coordination system proposed and addresses challenging problems of robustness with respect to certain types of vehicle failures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Backward and forward path following control of a wheeled robot

A wheeled mobile robot is one of the most important types of mobile robots. A subcategory of these robots is wheeled robots towing trailer(s). Motion control problem, especially in backward motion is one of the challenging research topics in this field. In this article, a control algorithm for path-following problem of a tractor-trailer system is provided, which at the same time provides the ab...

متن کامل

Dynamical formation control of wheeled mobile robots based on fuzzy logic

In this paper, the important formation control problem of nonholonomic wheeled mobile robots is investigated via a leader-follower strategy. To this end, the dynamics model of the considered wheeled mobile robot is derived using Lagrange equations of motion. Then, using ADAMS multi-body simulation software, the obtained dynamics of the wheeled system in MATLAB software is verified. After that, ...

متن کامل

Nonlinear Coordinated Path Following Control of Multiple Wheeled Robots with Bidirectional Communication Constraints

The paper presents a solution to the problem of steering a group of wheeled robots along given spatial paths, while holding a desired inter-vehicle formation pattern. This problem arises for example when multiple robots are required to search a given area in cooperation. The solution proposed addresses explicitly the dynamics of the cooperating robots and the constraints imposed by the topology...

متن کامل

Control of Wheeled Mobile Manipulators with Flexible Suspension Considering Wheels Slip Effects

Wheeled mobile manipulators utilize both the locomotion capabilities of the wheeled platform and manipulation capacity of the arm. While the modelling and control of such systems have previously been studied, most of them have considered robots with rigid suspension and their wheels are subject to pure rolling conditions. To relax the aforementioned limiting assumptions, this research addresses...

متن کامل

Trajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On Computational Model of KHEPERA IV

This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. The purpose of control is to track a predefined reference trajectory with the best po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Systems Science

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2006